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ON LOCAL ERGODIC CONVERGENCE
OF SEMI-GROUPS AND ADDITIVE PROCESSES

BY
MICHAEL LIN'

ABSTRACT

We prove the local ergodic theorem in L.: Let {T,},., be a strongly continuous
semi-group of positive operators on L,. If T, is continuous at 0, then
e ' fi THf(x)dt— T f(x) a.e., for every f € L... The technique shows how to
obtain the L, local ergodic theorems from the L,-contraction case. It applies
also to differentiation of L, additive processes. The n-dimensional case, which
is new, is proved by reduction to the n-dimensional L,-contraction case, solved
by M. Akcoglu and A. de! Junco.

1. Introduction

N. Wiener [22] proved a local ergodic theorem for measure preserving flows in
1939. Thirty years later, many authors started to be interested in obtaining local
ergodic theorems for semi-groups. Thus the problem is the following: Let
(X, 2, m) be a probability space, and let {T;},-., be a strongly continuous (at ¢ > 0)
semi-group of bounded linear operatorsin L, (1 = p < ). When do we have that
e~ [ T.f(x)dt converges a.e., as € — 0, for every f € L,? (To be more precise,
is there some f, such that &,' [, T,f(x)dt— fo(x) a.e., as &, — 0", or, equiva-
lently [3], [20], are there representatives of ¢~' f§ T,f(x)dt such that the limit
exists a.e. as ¢ >07.)

For L. we have a similar problem, but {T,} is assumed only w*-continuous at
t>0, and each T, is w*-continuous on L. (i.e., {T;} is the dual of an
L,-continuous semi-group). A generalization of Wiener’s result in L., for
non-singular transformations, was given by U. Krengel [10].

In this paper we are interested in the case of a semi-group of positive
operators (i.e., f20=> T.f=0), and we assume ‘“‘local boundedness”:
sup{||T.:0<t=1} <,

The local ergodic theorem was proved in the following cases, for {T:} positive:
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(A) p=1|T||=1, . —> I strongly (Krengel [9], Ornstein [15]).
B)p=1|T|=1 (Akcoglu—Chacon [1)).

O lsp<x, T, — I strongly (Kubokawa [11], [12], McGrath [23]).
D) 1=p<e, T, '—Oa E strongly, |E||=1 (Sato [16]).

In section 2 we solve the L. case, and show how to obtain the result (D) of
Sato by reduction to (A) or (B).

Sato [18], and Akcoglu and Krengel [5], have shown that for p = 1 continuity
at 0 is not sufficient for the local ergodic theorem to hold (nor is it necessary [1]).
For 1 < p <, Sato [16] has shown that local boundedness implies the continuity
at 0, but the question of the local ergodic theorem in L, is still unresolved.

Akcoglu and Krengel [3] have generalized the result of [1] to obtain a
differentiation theorem for additive processes in L,, with respect to a positive
contraction semi-group. In [4] they make a refinement to obtain a result in L,.
Our method shows how to obtain their L, result from the L, result. This is done
in detail for n-dimensional processes in section 3, where the L, contraction case
was proved by M. Akcoglu and A. del Junco [2]. A local ergodic theorem for
n-dimensional semi-groups is in [21].

Finally, we mention that the local ergodic theorem was proved for a
contraction semi-group (not necessarily positive) in L,, under the assumption
that T, — I strongly as t — 0, by Kubokawa [13], Kipnis [8], and Sato [19]. A
partial result in L. was given by Sato [20]. It is not clear how to apply our result
(for the positive case) to the general case. For contractions in L, which are also
L. contractions see [2], [11], while a negative answer for general contraction
semi-groups in L, is given in [5] and in [24).

2. The local ergodic theorem in L.

It is now known that a semi-group of positive linear operators on L, may be
continuous at 0 and fail the local ergodic theorem (Sato [18], Akcoglu and
Krengel [5]). On the other hand, the result of Akcoglu and Chacon [1], and an
example there, show that continuity at zero is not necessary. We show thatin L.
the situation is different.

THeOREM 2.1. Let {T.}:-0 be a strongly continuous (at t > 0) semi-group of
positive linear operators on L\(X,3, m). Then the following are equivalent:
(@) supo<i=i1|| Ti]| <, and &' [§ T* f(x)dt converges a.e. for every fE L.

(b) {T.} is strongly continuous at zero (i.e., there is a T, such that T, - T,
strongly in L.
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When (a) and (b) are satisfied, the limit in (a) is necessarily TF f(x).

Proor. (a)=> (b). Let u €L, Then, by Lebesgue’s theorem and (a),
(e [ T, f)=(u, e '[i T*fdt) converges for every f € L.. By the weak se-
quential completeness of L,, there is an element To(u) such that weak-
lim,_o¢ 'Ji Tudt = To(u). The mapping is clearly linear and positive.

We can now apply theorem 10.5.1. of {7] to obtain that T, is a projection on
Lo=U{TL,:t>0}, and T,T, = TT,= T, for t >0 (only weak convergence is
actually needed, once we know that the weak limit is in L,, since each T, is also
continuous on L, with its weak topology). For t>0, on T.L, we have
lim,_o T,T.u = Tu by strong continuity, and since supo< =i || T || < ¢, lim o Tu =
u on Lo, hence T = T.Tov —— Tov, for every v € L.

(b) = (a). Take u € L, with u >0 a.e., and define C = {x : Tou(x)> 0}. Then
for 0= v € L, we have {T,v > 0} C C (so the definition of C does not depend on
the choice of u). Fort>0and v € L, we have Tw = ToTw € L(C), so L.(C) is
invariant under {T;}. Define D = X — C. Then T%1, =0 for t =0, since for
v €L, we have

(v, T11p) =(Tw, 1) =0.

Denote S, = ¢ ' f§ T.dt (which exists in the strong L,-topology). We have to
show that S¥f - T%f a.e., and we show first that the convergence holds on C.
Since T*15, =0 for every t =0, we need consider f € L.(C).

Let R, be the restriction of T, to L,(C). Then for v € L\{(C), f € L.(C), we
have (v, R*f) =(Rw,f)=(Tw,f)=(v, T%f),sothat RTf=Tifon C Leta >0
be greater than the type of {T.}.

Letu >0a.e. bein L,, and let u, = f5 e *Tudt. By continuity o> 0on C, and
u, € L,(C) since Tu € L,(C).

Now, for t =0 we have

x

Ruo= Tu,= J’ e “T..uds =e*u,.

0
Hence, for t Z0 we have, for f € L.(C), that

[ &Ry = [ &R = | fuodm

so that e R* is a contraction semi-group on L,(C, uodm). Let g € L(C),
f € L(C). Then
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j g(e "R flusdm = f e “R.(guo)fdm = e f T, (guo)fdm

—>J' To(guo) fdm =J g(R? fuodm.

t +0

By approximation e “'R ¥ is weakly continuous at 0, hence strongly continuous
at 0 on L,(C, uodm). We can now apply the local ergodic theorem [9] to obtain
that for f € L.(C)C L\(C,usdm), ¢ ' fie 'R f(x)dt converges to R5f(x)a.e.
on C. Hence also S*;f(x)—:? T%f(x)a.e. on C (since e ™ — 1),

We now have to prove convergence on D, for fEL(C). Let fi=q-
limsup.oS*f, f>=q-liminf._,- S*f (where g-limit means that ¢ — 0" along a
countable set).

We know that | T,]|=Me= by strong continuity, and hence ||S*f
I I supo<.s: || T. || for & = 1. Hence f, and f; are in L, and

|s
L=

Téfi z q-lim_’%l‘Jp g L TsT* f(x)dt = f,,

and T3f,=f.. Hence fi—f.=0 is supported on D (since f,=f, on C by the
previous arguments), and T§(f,~f-)Zf,—f.=0. But T§1, =0, hence f, = f..
This shows that S*f(x) converges a.e. (see [3]). By part (a) the limit is
necessarily T3 f(x).

RemaRrk. The difficulty in using the above proof also for the L, case lies in
passing from C to D (where continuity at 0 was used), since we need
Supo<.<i £ ' 6 Tif(x)dt €L, (when T% acts on L,). A dominated ergodic
estimate for power-bounded positive operators in L, (1<p) will yield the
required result.

We next indicate how to obtain a general form of the local ergodic theorem by
reduction to the Akcoglu-Chacon theorem. We assume 1 =p <, and {T,} a
locally bounded semi-group of positive linear operators on L,. Let u € L, satisfy
u>0a.e.

Since {T,} is locally bounded, |T.||= Me® for some B =0. Let a>p,
uo=fo e “Tudt, and define C ={u,>0}, D =X —C. Similarly, let g€ L7}
satisfy g >0 a.e., go=Joe “Tigdt (defined in the weak-* topology of L. if
p =1) and define C* ={go>0}, D*=X-C".

THEOREM 2.2. Foreveryf € L,,lim o ' [§ T.f(x)dt exists a.e. on C* U D.

SKETCH OF ProoOF.  For f € L, with |f| = Ku, we have that T,f =0 a.e. on D,
for each t >0, since (T, 15) =0 on (0,). On C* we use the reduction to the
L -contraction case, as in the proof of Theorem 2.1 (replacing C there by C*).
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CoroLLARY 2.3. If 1=p <, and {T }.z is a strongly continuous semi-group
of positive operators with lim,o+ T, = E, | E | =1, then the local ergodic theorem
holds.

ProoF. (a) 1<p <. E is a positive contractive projection of L,. Now
Euo = u, for us€ L, implies E*(u5™')=u8"', and C = C*.

(b) p=1. Now E is a positive contraction of L,, having a fixed point
supported on C. Hence C is (in) the conservative part of E, and E*1¢c 2 1.
yields C C{E*1> 0} = C*. (In fact, after a change of measure E is a conditional
expectation [14], but this fact is not needed.)

REMARKS. (1) For p =1, we need not have C = C* On L,({1,2}) with
counting measure define T,(fi,f.)=(fi+f50). Then C={1}, D ={2}. But
T3(81,82)=(81,8), so C*={1,2} and D*=(J. (The condition p =1 was
inadvertently dropped in the remarks of [4, p. 33].)

(2) The above example shows that the remark D C D* made in [4, p. 33] is
incorrect.

3. n-dimensional semi-groups and additive processes

We start by generalizing the decomposition given in the previous section. In
this section {T.}.ce, is an n-parameter semi-group of positive linear operators on
L,, where t = (t,,- - -, t,) satisfies , > 0. We assume continuity at ¢, which means
that the n semi-groups {T.. },»0 are continuous (e; is the i-th unit vector in R,.),
and local boundedness, which yields the existence of a 8 and an M > 0 such that
I T. ]| = Me®®, where ¢(t)=2/_,t. We may and do assume 8 = 0.

ProposSITION 3.1. Let {T.}.ce, be as above. Let f € L, satisfy f > 0 a.e. and for
a > B define fo=[5--- [t e *OT,fdt. Let C ={fo>0} and D = X — C. Then:

i) T.(L,(X))CL,(C) for every t €P,,

(i) e “Tfo=foEL, for every t EP,,

(iti) if g € L (D), then Ttg =0, for t EP,.

Proor. (ii) Computation.
(iii) If 0=g € L,(D), then

0=togr=[ -+ [ erxs Tig)ar

Hence the continuous function {f, T%g) = (T.f, g) is zero on P.,, and, since f >0
ae., T7g =0 for t EP,.
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(i) Let h€ L,. Then (Th,g)=<(h, Tig)=0 for g € L, (D), by (iii)). Hence
Th =0ae.on D.

REMARK. Property (i) shows that the decomposition does not depend on the
choice of f >0 a.e. Property (iii) shows also that it does not depend on a > 8
chosen.

Carrying out the same construction for the dual semi-group {T%}, we obtain a
decomposition into sets C* and D* (for p = 1, g = =, and weak-* continuity is
sufficient. The semi-group is the dual of an L, semi-group. Also (iii) is to be read
with g € L, when the proposition is applied to p = ).

Terrell [21] proved the local ergodic theorem in L, for | T,||= 1 and lim,, T, =
I. For 1 <p <= see [23]. All the results of section 2 can be generalized with
similar proofs. We will carry it out in a more general context.

DEerINITION.  Let {T.}.ep, be a semi-group as above. Let 7, be the collection
of all order intervals in R,. A set function F:J,— L, is an additive process
(with respect to {T.}) if:

3.1) TF(I)=F@t+1) forteP, IE€J..
k

For I,,---, Ik € 7, pairwise disjoint such that |J I € 7,,,

(3.2 F()= 2. F(I).

If there is a K such that | F(I)||= KA(I) the process is called bounded (A is
Lebesgue’s measure on R,).
We denote by [a, b] the order interval {t ER, :a =t = b}.

THeOREM 3.2. Let {T.}ee, be a locally bounded strongly continuous semi-
group of positive linear operators on L,, and let F : 9, — L, be a bounded additive
process. Then lim,_o ¢ "F[0,£(1,1,---,1)] exists a.e. on C* U D.

ReMARK. Akcoglu and del Junco [2] proved that for p=1 and ||T,[|=1
convergence holds a.e. This result will be used in the proof.

PrROOF. We first note that on D the process is zero, i.e. 1p,F(I)=0 a.e. This
follows from Proposition 3.1 (i), with a proof as in [2, Lemma 2.2], so we need
only prove convergence on C*.

We apply Proposition 3.1 (i) to {T*%} and obtain that L, (C*) is invariant under
{T7}. Denote S, = T% |1 «c+. Then for fEL,(C*), g € L,(C*), we have

(St f.8)=(f.Tig)=(Tf g).
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Hence Stf=Tf on C* for f€L,(C*). Let go€ L,(C*) be the function
obtained by applying Proposition 3.1 (i) to T% (with f replaced by g). Let
R, = e *"S*% and du = godm. Then0=f € L,(C*, m)isin L,(C*, ), and, by
Proposition 3.1 (ii), we have

f R, fdu =f fe *OT*gudm = f fgodm = f fau.

Hence {R.} is an n-parameter semi-group of positive linear contractions of
L(C*, ). If g € L.(C*), then [(R.f)gdu = e =" [ fT*(gg,)dm, which is con-
tinuous at >0 by the continuity of {T,}. Hence {R.}ice, is a continuous
n-parameter semi-group in L,(C*, n).

We first assume F(I)=0 for every I (a positive process).

We now construct a bounded additive process G in L,(C*, n) (with respect to
{R.}), using the given process F. Now, for ¢ a continuous function from R, to R,
with bounded support, [ ¢ (s)dF(s) is defined as an element of L, (see [2, (3.3)].
In fact, for a bounded subset A C R;, F defines a vector valued measure, and the
integral [ ¢(s)dF(s) is defined for ¢ bounded measurable with compact
support. Let F*(I)=1c.F(I). Then [ ¢ (s)dF*(s)is 1¢c- [ ¢ (s)dF(s). With these
preliminaries, define the process

G(I)=f' e"'“"”dF*(s)=f 1;(s)e *®dF*(s)

(values restricted to points in C*). Then, since « >0 and I CR;, and F is
positive

L‘ Gdu = J'C‘ (J; e"""(”dF*(s)> go(x)dm

s [ F(gedm = |F @)L ol = KA (Dol

Hence G (I) is countably additive (being an integral) and bounded in L,(C*, ).
We show that G(I) satisfies (3.1) with R,. The next equalities hold a.e. on C*:

R,G(I)= e—mp(rjsg: [f e—uw(s)dF*(s)] — lc‘e_"“’("T, [f ll(s)e—mp(s)dF(s)]
1

= 1C.e-w<')f 1i(s —1)e ¢ dF(s) = 1c-GU + 1) = G(I +1).

(We have used the formula T, [ ¢(s)dF(s)= [ ¢ (s — t)dF(s), which follows
from TF(I)=F(I+1).)
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By the Akcoglu-del Junco theorem (2], lim,_o- € "G[0,e(1,1,- - -, )] exists
a.e.on C*. But G(I)= F*(I)=1¢-F(I), and

G[0,e(1,1,---,D}=e “"F*[0,(1,1,-- -, 1)].
Hence
£ "G[0,e(1;1,- -, D] = e "F*[0,e(1,1,- -, Dj=e™e "G[0,e(1,1,-- -, 1)]

and the limit exists, since e — 1, and the theorem is proved for positive F.

For a general bounded additive process F, the proof in [2, (3.6)] shows that it is
the difference of two positive bounded additive processes (L, or the contractive
nature of {T,} is not used there). Hence the theorem is proved.

COROLLARY 3.3. If, in addition to the assumptions of Theorem 3.2., {T.} is
continuous at the origin 0= (0,0, --,0), and E =lim,_, T, is a contraction, then
the convergence holds a.e. (1 =p <=x).

PrOOF. It can be shown that continuity at 0 gives that C is the support of
positive E-invariant functions, as is done in the one-dimensional case (in the
course of the proof of Theorem 2.1). Now the proof of Corollary 2.3 yields
C C C* (with equality for 1 <p <=).

RemaRrk. For the one-dimensional case and F a positive additive process,
boundedness of the process is not required in [3], and our proof yields a proof of
[4, theorem 1] by reduction to [3] (since we use boundedness, in the positive case,
only to obtain the boundedness assumption of [2]).
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