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ON LOCAL E R G O D I C  C O N V E R G E N C E  
OF SEMI-GROUPS A N D  A D D I T I V E  PROCESSES 

BY 

MICHAEL LIN' 

ABSTRACT 

We prove the local ergodic theorem in L~: Let {T,},>o be a strongly continuous 
semi-group of positive operators on L,. If T, is continuous at 0, then 
e 'f~ T*[(x)dt --~ T*[(x) a.e., for every [ ~ L~. The technique shows how to 
obtain the Lp local ergodic theorems from the Lrcontraction case. It applies 
also to differentiation of Lp additive processes. The n-dimensional case, which 
is new, is proved by reduction to the n-dimensional Lrcontraction case, solved 
by M. Akcoglu and A. del Junco. 

1. I n t r o d u c t i o n  

N. Wiener [22] proved a local ergodic theorem for measure preserving flows in 

1939. Thirty years later, many authors started to be interested in obtaining local 

ergodic theorems for semi-groups. Thus the problem is the following: Let 

(X, Z, m )  be a probabili ty space, and let {T,},>o be a strongly continuous (at t > 0) 

semi-group of bounded linear operators  in Lp (1 _--< p < ~). When do we have that 

e-' f~ T,f(x)dt converges a.e., as e ---~0 +, for every [ E Lp? (To be more precise, 

is there some fo such that e~f~"T,f(x)dt---~fo(X) a.e., as e,---~0 +, or, equiva- 

lently [3], [20], are there representatives of e-' f~ T,f(x)dt such that the limit 

exists a.e. as e--* 0§ 

For L= we have a similar problem, but {T,} is assumed only w*-continuous at 

t > 0 ,  and each T, is w*-continuous on L= (i.e., {T,} is the dual of an 

L~-continuous semi-group). A generalization of Wiener 's  result in L=, for 

non-singular transformations,  was given by U. Krengel [10]. 

In this paper  we are interested in the case of a semi-group of positive 
operators  (i.e., [_->0 �9 T,[_=0), and we assume "local boundedness": 
sup{ll T, I1:0< t =< 1} < oo. 

The local ergodic theorem was proved in the following cases, for {T,} positive: 
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(A) p = 1, fIT, lie 1, T, , I strongly (Krengel I9l, Ornstein [151). 
t ~ O  + 

(B) p = 1, II z II- 1 (Akcoglu-Chacon [1]). 

(C) 1 <= p < o:, T, ) I strongly (Kubokawa [11], [12], McGrath [23]). 
t ~ O  + 

(D) l_-<p< oc, 7", , E  strongly, IIEII_-< 1 (Sato [161). 

In section 2 we solve the L~ case, and show how to obtain the result (D) of 

Sato by reduction to (A) or (B). 

Sato [18], and Akcoglu and Krengel [5], have shown that for p = 1 continuity 

at 0 is not sufficient for the local ergodic theorem to hold (nor is it necessary [1]). 

For 1 < p < 0% Sato [16] has shown that local boundedness implies the continuity 

at 0, but the question of the local ergodic theorem in Lp is still unresolved. 

Akcoglu and Krengel [3] have generalized the result of [1] to obtain a 

differentiation theorem for additive processes in L~, with respect to a positive 

contraction semi-group. In [4] they make a refinement to obtain a result in Lp. 

Our method shows how to obtain their Lp result from the L, result. This is done 

in detail for n-dimensional processes in section 3, where the L~ contraction case 

was proved by M. Akcoglu and A. del Junco [2]. A local ergodic theorem for 

n-dimensional semi-groups is in [21]. 

Finally, we mention that the local ergodic theorem was proved for a 

contraction semi-group (not necessarily positive) in L~, under the assumption 

that T, ~ I strongly as t ~ 0 ,  by Kubokawa [13], Kipnis [8], and Sato [19]. A 

partial result in L~ was given by Sato [20]. It is not clear how to apply our result 

(for the positive case) to the general case. For contractions in Lp which are also 

L~ contractions see [2], [ l l  L while a negative answer for general contraction 

semi-groups in L2 is given in [5] and in [24]. 

2. The local ergodic theorem in L~ 

It is now known that a semi-group of positive linear operators on L, may be 

continuous at 0 and fail the local ergodic theorem (Sato [18], Akcoglu and 

Krengel [5]). On the other hand, the result of Akcoglu and Chacon [1], and an 

example there, show that continuity at zero is not necessary. We show that in L~ 

the situation is different. 

THEOREM 2.1. Let {T,},>o be a strongly continuous (at t > O) semi-group of 

positive linear operators on L~(X, E, m ). Then the following are equivalent: 

(a) supo<,~, II II < ~, and e- '  f~ T * f ( x ) d t  converges a.e. for every f E L~. 
(b) {T,} is strongly continuous at zero (i.e., there is a 7"(, such that 7", , 7",, 

strongly in L~. ,~o 
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When (a) and (b) are satisfied, the limit in (a) is necessarily T~ f(x) .  

PROOF. (a) :~ (b). Let u E L~. Then, by Lebesgue's  theorem and (a), 

(e-' f ,  T,u,f) = (u, e 'fo T ,  fdt) converges for every [ U L~. By the weak se- 

quential completeness of L~, there is an element To(u) such that weak- 

l im,_oe 'f~ T, udt = T,,(u). The mapping is clearly linear and positive. 

We can now apply theorem 10.5.1. of [7] to obtain that To is a projection on 

Lo = U{T,L~ : t > 0}, and ToT, = T, To = T, for t > 0 (only weak convergence is 

actually needed, once we know that the weak limit is in Lt, since each T, is also 

continuous on L~ with its weak topology). For t > 0 ,  on T,L~ we have 

lim,_,, T,T,u = T,u by strong continuity, and since supo<~, II T, II < o~ lim,_o T,u = 
u on L,, hence T,v = T, Tov ~ Toy, for every v E L t .  

(b) f f  (a). Take u E L, with u > 0  a.e., and define C = {x:Tou(x)>O}.  Then 

for 0 _-< v E Lt we have {Toy > 0} C C (so the definition of C does not depend on 

the choice of u). For t > 0 and v E L~ we have T,v = ToT, v E L~(C), so L~(C) is 

invariant under {T,}. Define D = X - C .  Then T*,I,, = 0  for t =>0, since for 

v E L ~  we have 

(v, T* lo)  = (T,v, lo )  = 0. 

Denote  S, = e-'  f~ T, dt (which exists in the strong L~-topology). We have to 

show that S*~f ~ Tg[  a.e., and we show first that the convergence holds on C. 

> need consider ]" E L~(C). Since T*,lo = 0  for every t = 0 ,  we 

Let R, be the restriction of T, to L,(C). Then for v E L,(C), f E L~(C), we 

have (v, R *f)  = (R,v,[) = (T,v,f) = (v, T ' f ) ,  so that R * f  = T * f  on C. Let a > 0 

be greater  than the type of {'jr,}. 

Let u > 0 a.e. be in L~, and let u, = fff e-~'T, udt. By continuity uo > 0 on C, and 

UoE L~(C) since T,u E L~(C). 
Now, for t ->0  we have 

R,uo = T, uo = e ~'T,.,uds <= e ~'Uo. 

Hence,  for t _-> 0 we have, for f E L~(C), that 

f ( e - ~ 1 7 6  fuodm, 

so that e-~'R * is a contraction semi-group on L~(C, uodm). Let g UL=(C), 

f ~ L ( C ) .  Then 
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By approximation e " 'R *, is weakly continuous at 0, hence strongly continuous 

at 0 on LI(C, uodm). We can now apply the local ergodic theorem [9] to obtain 

that for f E L~( C) C L~( C, uodm ), e 1 f ~ e-~'R *, f (x )dt converges to R * f (x ) a.e. 
on C. Hence also S* f ( x ) , - -~  ~ T~f(x) a.e. on C (since e - " ' -+ l ) .  

We now have to prove convergence on D, for f E L ( C ) .  Let f l = q -  

lira sup~0 S* f, f2 = q-lim inL40. S* f (where q-limit means that e --~ 0 ~ along a 

countable set). 

We know that tl T, II <= Me ~' by strong continuity, and hence ITS*, f II~-<- 

Ilfll supo<,_ ,llT, II for e =< 1. Hence fl and f2 are in L~, and 

fo r*f~ _>-q-limsup e ' r*r*,f(x)dt  =f,, 

and T~hNf2.  Hence f~-f2>=O is supported on D (since fl---f2 on C by the 

previous arguments), and r ; 0  ~, - f,) =~ fl - f2  --> 0. But T*lo  = 0, hence f, = f2. 

This shows that S ' f  (x) converges a.e. (see [3]). By part (a) the limit is 

necessarily T ' f  (x). 

REMARK. The difficulty in using the above proof also for the Lp case lies in 

passing from C to D (where continuity at 0 was used), since we need 

supo<~le- ' f ;T*f(x)dt  ~Lp (when T* acts on Lp). A dominated ergodic 

estimate for power-bounded positive operators in Lp (1 < p )  will yield the 

required result. 
We next indicate how to obtain a general form of the local ergodic theorem by 

reduction to the Akcoglu-Chacon theorem. We assume 1-_< p < % and {T,} a 

locally bounded semi-group of positive linear operators on Lp. Let u ~ Lp satisfy 

u > 0  a.e. 
Since {T,} is locally bounded, IlZ, ll<-Me ~ for some /3_->0. Let a > / 3 ,  

uo=fSe-~'T, udt, and define C ={uo>0},  D = X - ( 7 .  Similarly, let g ~ L~ 

satisfy g > 0  a.e., g,l=f~e-~'T*,gdt (defined in the weak-* topology of L~ if 

p = 1) and define C* ={go>0}, D * =  X - C * .  

THEOREM 2.2. For eoery f E L,, lim,--.o �9 e-I f~ T,f(x )dt exists a.e. on C* 13 D. 

SKEXCH OF PROOf. For f E Lp with }fl <= Ku, we have that T,f = 0 a.e. on D, 

for each t >0 ,  since (T,u, lo)  = 0 on (0,~). On C* we use the reduction to the 

LL-contraction case, as in the proof of Theorem 2.1 (replacing C there by C*). 
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COROLLARY 2.3. I f  1 <~ p < oo, and {T, },_->o is a strongly continuous semi-group 

of positive operators with lim,~o+ T, = E, 11E 1[ _-< 1, then the local ergodic theorem 

holds. 

PROOF. (a) l < p  <o0. E is a positive contractive projection of Lp. Now 

Euo = Uo for uoELp implies E*(uoP-') = ug -~, and C = C*. 

(b) p - - 1 .  Now E is a positive contraction of Lj, having a fixed point 

supported on C. Hence C is (in) the conservative part of E, and E * l c  > lc 

yields C C {E*I > 0} = C*. (In fact, after a change of measure E is a conditional 

expectation [14], but this fact is not needed.) 

REMARKS. (1) For p = 1, we need not have C - - C * .  On L1({1,2}) with 

counting measure define T,(f~,/2)=(f~+f2,0).  Then C={1},  D ={2}. But 

T*(g~,g2)=(g~,g~), so C*={1,2}  and D * = O .  (The condition p = l  was 

inadvertently dropped in the remarks of [4, p. 33].) 

(2) The above example shows that the remark D C D* made in [4, p. 33] is 

incorrect. 

3. n-dimensional semi-groups and additive processes 

We start by generalizing the decomposition given in the previous section. In 

this section {T,},~p. is an n-parameter semi-group of positive linear operators on 

Lp, where t = (tl , '"  ", t,) satisfies t~ > 0. We assume continuity at t, which means 

that the n semi-groups { T,,,, },,>o are continuous (ei is the i-th unit vector in R,),  
and local boundedness, which yields the existence of a 13 and an M > 0 such that 

11 T, [[ =< Me ~*",, where ~0(t) = E7=1 t~. We may and do assume /3 => 0. 

PROPOSITION 3.1. Let {T,},~p, be as above. Let f E Lp satisfy f > 0 a.e. and for 

a >/3 define [o = f S " "  fo e-~*(')T, fdt. Let C = {fo > 0} and D = X - C. Then : 
(i) T, (Lp (X))  C Lp (C) for every t ~ P,, 

(ii) e-~")T,  fo<=foELp for every t E P , ,  

(iii) if g E L q ( D ) ,  then T*g =--0, for t E P . .  

PROOF. (ii) Computation. 

(iii) If 0 =< g E Lq (D), then 

fo fo ~ 0 = (fo, g) . . . .  e-~")(f ,  T*g)dt. 

Hence the continuous function (f, T*,g) = (T,[, g) is zero on Pn, and, since f > 0 

a.e., T*g = 0  for t EPn. 
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(i) Let h E L,. Then (T ,h ,g )=  (h, T ' g ) =  0 for g E Lq (D), by (iii). Hence 

T,h = 0 a.e. on D. 

REMARK. Property (i) shows that the decomposition does not depend on the 

choice of f > 0 a.e. Property (iii) shows also that it does not depend on a >/3 

chosen. 

Carrying out the same construction for the dual semi-group {T*}, we obtain a 

decomposition into sets C* and D* (for p = 1, q = ~, and weak-* continuity is 

sufficient. The semi-group is the dual of an L, semi-group. Also (iii) is to be read 

with g E L, when the proposition is applied to p = oc). 

Terrell [21] proved the local ergodic theorem in L, for II II--< 1 and lim,~, T, = 

L For I < p < ~ see [23]. All the results of section 2 can be generalized with 

similar proofs. We will carry it out in a more general context. 

DEFINITION. Let {T,},~p. be a semi-group as above. Let 3-, be the collection 

of all order intervals in R,*. A set function F : 3-, ~ Lp is an additive process 

(with respect to {7",}) if: 

(3.1) T,F(I) = F(t + I) for t E P.,  I E 3-.. 
k 

For L," �9 ", Ik E 3-. pairwise disjoint such that U L ~ 3-., 
i=1  

k 

(3.2) F(I)  = ~ F(I,). 

If there is a K such that IIF(I)II -< _ K A ( I ) t h e  process is called bounded (dr is 

Lebesgue's measure on R,).  

We denote by [a,b] the order interval {t E R ,  :a  =< t =< b}. 

THEOREM 3.2. Let {T,},~p. be a locally bounded strongly continuous semi- 

group of positive linear operators on Lp, and let F : 3-, ~ Lp be a bounded additive 

process. Then lim,_.o, e-"F[0,  e(1, 1 , . . . ,  1)] exists a.e. on C* U D. 

REMARK. Akcoglu and del Junco [2] proved that for p = 1 and IIT, II-<I 

convergence holds a.e. This result wilt be used in the proof. 

PROOF. We first note that on D the process is zero, i.e. loF( l )  = 0 a.e. This 

follows from Proposition 3.1 (i), with a proof as in [2, Lemma 2.2], so we need 

only prove convergence on C*. 

We apply Proposition 3.1 (i) to {T*} and obtain that Lq (C*) is invariant under 

{T*}. Denote S, = T* I,,~c'~. Then for f E Lp (C*), g E Lq (C*), we have 

( S ' f ,  g) = (f, T ' g ) =  (T,f, g). 
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Hence S*f  = Ttf on C*, for fCLp(C*) .  Let goELq(C*) be the function 
obtained by applying Proposition 3.1 (i) to T* (with f replaced by g). Let 

R, = e-"*~')S*, and dtz = godm. Then 0 -< f E Lp (C*, m ) is in L~(C*, tz), and, by 
Proposition 3.1 (ii), we have 

fR,fd~z=f[e-~ 
Hence {R,} is an n-parameter semi-group of positive linear contractions of 

L,(C*,/z) .  If g E L(C*) ,  then f (R,f)gdlx = e-~"~ f fT*(gg,,)dm, which is con- 

tinuous at t > 0  by the continuity of {T,}. Hence {R,},~p, is a continuous 

n-parameter semi-group in L~(C*, tz). 
We first assume F(I)>= 0 for every I (a positive process). 

We now construct a bounded additive process G in L~(C*,/z) (with respect to 

{R,}), using the given process F. Now, for ~b a continuous function from R, to R, 

with bounded support, f c~(s)dF(s) is defined as an element of Lp (see [2, (3.3)]. 

In fact, for a bounded subset A C R~ +, F defines a vector valued measure, and the 

integral f~b(s)dF(s) is defined for ~b bounded measurable with compact 

support. Let F*(I) = lc. F(I). Then f da (s)dF*(s) is lc. f ck(s)dF(s). With these 
preliminaries, define the process 

G ( I ) =  f, e ~"'dF*(s)= f 1,(s)e ~"'dF*(s) 

(values restricted to points in C*). Then, since a > 0 and I C R~ +, and F is 
positive 

fc. ~ = fc. (f, e-~*~S'dF*(s)) g~ 

fc II )11 II II <KA(I)llgoll.. <= F(I)godm < F(I p g o , =  

Hence G (I) is countably additive (being an integral) and bounded in L~(C*,/x). 

We show that G(I) satisfies (3.1) with R,. The next equalities hold a.e. on C*: 

R,G(I )=e  ~" 'S*  [ f ,  e-~*" 'dF*(s)]=lc .e-~" 'T ,[ f  1,(s)e-~")dF(s)] 

f 1,(s - t)e-~r = lc .G(I  + t) = G(I + t). l c . e - ~  ,) 

(We have used the formula T,f,~(s)dF(s)=fr which follows 
from T,F(I) = F(I + t).) 
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By the Akcoglu-del Junco theorem [2], lim~,,, e -"G[0,  e(1, 1 , . . - ,  1)] exists 

a.e. on C*. But G ( 1 )  < _ F * ( I ) =  l c .F (1 ) ,  and 

G[0, e ( l ,  1 , . . . ,  1)] => e ~"'F*[0, e(1, 1,." ", 1)]. 

Hence 

e "G[0, e ( I ; 1 , "  ", 1)]<= e "F*[0, e ( l ,  1,-.-,1)]<= e""'e "Gl0,  e(1, 1 , - . . ,  1)] 

and the limit exists, since e ~"" --* 1, and the theorem is proved for positive F. 

For a general bounded additive process F, the proof in [2, (3.6)] shows that it is 

the difference of two positive bounded additive processes (L~ or the contractive 

nature of {T,} is not used there). Hence the theorem is proved. 

COROLLARY 3.3. If, in addition to the assumptions o[ Theorem 3.2., {T,} is 

continuous at the origin 0 = (0, 0,.  �9 0), and E = lim,~o T, is a contraction, then 

the convergence holds a.e. (1 -< p < ~). 

PROOF. It can be shown that continuity at 0 gives that C is the support of 

positive E-invariant functions, as is done in the one-dimensional case (in the 

course of the proof of Theorem 2.1). Now the proof of Corollary 2.3 yields 

C C C* (with equality for 1 < p < co). 

REMARK. For the one-dimensional case and F a positive additive process, 

boundedness of the process is not required in [3], and our proof yields a proof of 

[4, theorem 1] by reduction to [3] (since we use boundedness, in the positive case, 

only to obtain the boundedness assumption of [2]). 
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